The Logic and Metaphysics Workshop will meet on October 5th from 4:15-6:15 (NY time) via Zoom for a talk by Oliver Marshall (UNAM).

**Title**: Mathematical Information Content

**Abstract**: Alonzo Church formulated several logistic theories of propositions based on three alternative criteria of identity (1949, 1954, 1989, 1993). The most coarse grained of these criteria is Alternative (2), according to which two propositions are identical iff the sentences that express them are necessarily materially equivalent. Alternative (1) is more discerning. According to Alternative (1), two propositions are identical iff the sentences that express them can be obtained from one another by the substitution of synonyms for synonyms and λ-conversion. Church said that he intended this to limn a notion of proposition closely related to Frege’s notion of *gedanke*, but added that it will not be sufficiently discerning if propositions in the sense of Alternative (1) are taken as objects of assertion and belief (1993). Alternative (0), the most discerning criterion, says that two propositions are identical iff the sentences that express them can be obtained from one another by the substitution of synonyms for synonyms. I argue that Alternative (1) does indeed provide insight into one of the topics that concerned Frege (1884) – namely, abstraction. Then I discuss various counterexamples to Church’s criteria (including one due to Paul Bernays, 1961). I close by proposing a criterion of identity for mathematical information content based on the various examples under discussion.