Non-Classical Metatheory (Rohan French)

The Logic and Metaphysics Workshop will meet on April 26th from 4:15-6:15 (NY time) via Zoom for a talk by Rohan French (UC Davis).

Title: Non-Classical Metatheory

Abstract: A common line of thinking has it that proponents of non-classical logics who claim that their preferred logic L gives the correct account of validity, while at the same time giving proofs of theorems about L using classical logic, are in some sense being insincere in their claim that L is the correct logic. This line of thought quite naturally motivates a correctness requirement on a non-classical logic L: that it be able to provide internally acceptable proofs of its main metatheorems. Of central importance amongst such metatheorems will typically be soundness and completeness results, such results being apt to play important roles in arguments showing that a given logic gives the correct account of validity. On the face of it this sounds like a reasonable requirement, but determining its precise content requires us to settle two important conceptual questions: what counts as a completeness proof for a logic, and what does it mean for a result to be internally acceptable? To get clearer on this issue we will look at three different results which have some claim to being internally acceptable soundness and completeness proofs, focusing for ease of comparison on the case of intuitionistic propositional logic, examining the extent to which they can be said to provide internally acceptable soundness and completeness results.

Leave a Reply

Your email address will not be published. Required fields are marked *